Studies of Collectors. VI. 1) Application of β -Diketone-type Surfactants to Ion Flotation

Yoshifumi Koide,* Shuichi Kitaoka, and Kimiho Yamada Department of Synthetic Chemistry, Faculty of Engineering, Kumamoto University, Kurokami, Kumamoto 860 (Received February 12, 1985)

β-Diketone-type surfactants(2,4-alkanedione, R_nA) were applied as ion-flotation collectors and as extraction reagents. Fe³+, Ga³+, and Cu²+ were floated effectively with R_nA as a 1:1 complex from an acidic solution. From a mixture of metal ions(Fe³+, Ga³+, Cu²+, Zn²+, Pb²+, Cd²+, and Ca²+), the Cu²+ was floated selectively at pH 6 by R_8A or $R_{12}A$. Then, the metal ions were extracted with R_nA into a benzene layer as coordination-saturated species at regions of a neutral pH. The order of selectivity at pH 6.0 was Fe³+>Cu²+>.... The difference between the properties of R_nA as an ion-flotation collector and as an extraction reagent was explained using the HLB value and the surface activity based on the composition of R_nA -metal complexes. The metal ions and R_nA could be recovered from the scum.

Ion flotation has been examined as a method of collecting specific metal ions.²⁾ However, there are few ion-flotation collectors which exert the flotation effect by adding a small amount. In a previous paper³⁾ it was shown that complexane-type surfactants formed floatable complexes with heavy metal ions when the HLB(hydrophilic-liphophilic balance) values of the complexes were 4-14. Also, only a trace amount of surfactants remained in the residual solution. Consequently, the mechanism regarding ion flotation might be the complex formation (stability constant) and the flotation of the complex(HLB). Even if a surfactant shows a similar stability constant, the selective removal of a specific metal ion may be achieved using a chelating agent bearing a long alkyl group to regulate its HLB. However, there are few reports concerning flotation using such a chelating agent (surfactant) and the floatability of surfactant-metal complexes. Therefore, the HLB values of floatable complexes must be confirmed using various surfactants. Surfactants are considered to be excellent extraction reagents since their distribution coefficients are large due to a long alkyl group.4-6)

The enol form of acetylacetone, known as an extraction reagent, behaves as a bidentate univalent anion and forms a stable metal chelate.⁶⁾ In this study, in order to obtain further information about the HLB effects on floatability and selectivity, and to clarify the characteristic properties of ion-flotation collectors and extraction reagents, β -diketone-type surfactants(2,4-alkanediones, R_nA) were prepared and applied to an ion-flotion collector and compared with other extraction reagents.

Experimental

Materials. R_nA was prepared by the Claisen condensation of methyl alkanoate with acetone in the presence of a sodium hydride.⁷⁾ The crude R_nA was purified by the recrystallization of their copper complexes from 50% of a DMF-water solution and by fractionation at reduced

pressure after a decomposition process using 20% sulfuric acid. Abbreviations for various forms of RnA are R₈A(for 2,4-undecanedione), R₁₂A(for 2,4-pentadecanedione) and R₁₈A(for 2,4-henicosanedione). A further purification of R_nA gave rather low yields (R₈A 24%, R₁₂A 35%, $R_{18}A$ 48%). The structures of the synthesized R_nA were confirmed by means of their melting points,7) IR spectra (Shimadzu IR-408), NMR spectra (JEOL JMN-MH-100), and elementary analyses(Yanaco CHN Corder MT-3). Mp: $R_{12}A$, 31.5—33.0 °C (lit, 7) 31—32 °C); $R_{18}A$, 56.0—58.0 °C (lit,8) 52.5 °C). IR(KBr): ν_{CH} 2920 cm⁻¹, $\nu_{C=O}$ 1640 cm⁻¹. NMR (CCl₄) δ =0.9 (3H, t, CH₃-C-C-), 1.3 (methylene in alkane), 2.0 (3H, CH₃COC-), 2.2 (2H, t, -C-C-CH₂COC-), 3.4 (2H, -CCOCH₂COC-), 5.4 (H, -CC(-O-)= CHCOC-). R₈A Found: C, 70.82; H, 10.84%; Calcd for C₁₁H₂₀O₂: C, 71.70; H, 10.94%. R₁₂A Found: C, 74.67; H, 11.82% Calcd for C₁₅H₂₈O₂: C, 74.95; H, 11.74%. R₁₈A Found: C,77.63; H, 12.59% Calcd for C₂₁H₄₀O₂: C, 77.72; H, 12.42%. Acetylacetone(AA) and dibenzoylmethane(DBM) were obtained from Wako Pure Chemical Industries, Ltd., and benzoylacetone(BzA) was obtained from Kishida Chemical Co., Ltd.

The surface tensions of R_nA solutions were measured on a Du nouy surface-tension balance. R_nA in an alkaline solution lowered the surface tension: $46 \text{ dyn } (10^{-5}\text{N}) \text{ cm}^{-1}$ for $10^{-3} \text{ mol dm}^{-3}$ of $R_8A\{\text{critical micelle concentration } (\text{cmc})$ was not observed at below $10^{-3} \text{ mol dm}^{-3}\}$, 36 dyn cm^{-1} for $R_{12}A(\text{cmc } 5\times10^{-4} \text{ mol dm}^{-3})$, and 47 dyn cm^{-1} for $R_{18}A(\text{cmc } 3\times10^{-4} \text{ mol dm}^{-3})$. BzA and DBM, known as extraction reagents, scarcely lowered the surface tension. Therefore, the concentration of R_nA in the following ion flotations were always kept below their cmc.

Apparatus and Procedures. The removal of eight kinds of metal ions (Fe³⁺, Ga³⁺, Al³⁺, Cu²⁺, Zn²⁺, Pb²⁺, Cd²⁺, and Ca²⁺) was examined by the method of ion flotation and extraction. The concentrations of these metal ions were determined using an atomic absorption spectrophotometer (Hitachi 170—30). The flotation apparatus and procedures were the same as that previously reported.¹⁾ The floatability(%) of a metal ion was calculated using:

$$F = \frac{a_0 - a_1}{a_0} \times 100$$

where a_0 and a_1 denote the initial and final metal-ion concentrations in solution. Extraction was carried out

using a general operation; 100 cm³ of benzene was added to the 100 cm³ of metal solution in a separating funnel, and the funnel was shaken for 30 min. The extractability was calculated using the same formula as that regarding floatability.

Results and Discussion

Ion Flotation. The eight kinds of metal ions dissolved in 300 cm³ of water were floated with a small amount of R_nA, especially R₁₂A. The floatable pH ranges for a 10⁻⁵mol dm⁻³ solution of specific metal ions using 3×10⁻⁵ mol dm⁻³ of aqueous R₁₂A were as follows: for Fe³⁺, pH 4—8; for Ga³⁺, 4—8; for Al³⁺, 7—9; for Cu²⁺, 4—8; for Zn²⁺, 7—9; for Pb²⁺, 6—11; for Cd²⁺, 10—13; and for Ca²⁺, 12—13. The flotation data for Fe³⁺, Ga³⁺, and Cu²⁺ are shown in Fig. 1. The optimum pH for the Cu²⁺ and Fe³⁺ flotations shifted to a lower pH with an increase in the length of the alkyl group, and R₁₂A showed the highest floatability in the series of R_nA. However,

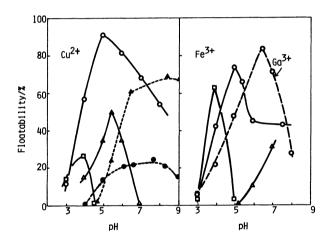


Fig. 1. Flotations for Cu²⁺, Fe³⁺, and Ga³⁺. Cu²⁺: 10^{-5} mol dm⁻³; Fe³⁺: 10^{-5} mol dm⁻³; Ga³⁺: 2.87×10^{-4} mol dm⁻³; $[R_n A]/[M] = 3$. \triangle : $R_8 A$, \bigcirc : $R_{12} A$, \square : $R_{18} A$, \triangle : BzA, \blacksquare : DBM.

DBM(having two phenyl groups) was not so effective and AA(having no long alkyl group) was wholly ineffective. The HLB value of the metal complex is affected by pH since the composition varies with pH.

Then, the metal-ligand ratio of a R₁₂A-copper complex was examined. The scum(resulting at pH 5.0 upon adding $R_{12}A$) decomposed with 10% sulfuric acid and the resulting R₁₂A was extracted using chloroform. The amount of R₁₂A was determined by spectrophotometry{Hitachi model 101; ε²⁷⁶, 8360 M⁻¹ cm⁻¹ (1 M=1 mol dm⁻³); λ , 276 nm in chloroform}. The mole ratio of R₁₂A and Cu²⁺ was 1:1. The obtained ratio was equal to that obtained by conductometry(Toa CM-7B). For R_nA-copper complex, a 1:1 complex would be present at a lower pH and the complex would be hydrolyzed above pH 5-6 since the hydrolysis constant of a copper(II) ion $(pK_1, I>O)$ is 5.4 to 5.8.9) The HLB values of these complexes calculated using the Oda equation^{3,10)} are shown in Table 1. High floatabilities were observed over a pH range of 3-4 for hydrophobic R₁₈A, 4-6 for less hydrophobic R₁₂A, and 5-6 for least hyrophobic R₈A. From these data, it is considered that the floatable complexes are R₈A-CuOH, R₁₂A-Cu+, R₁₂A-CuOH, and R₁₈A-Cu+. Their HLB values are in a range of 4-8. Furthermore, the relation between floatability and surface activity at pH 5 is shown in Table 2. The surface tension of 10⁻⁴ mol dm⁻³ R₁₂A solution was 54 dyn cm⁻¹, and the value in the presence of 3×10^{-4} mol dm⁻³ Cu²⁺, Fe³⁺, or Ca²⁺ ion was 65 dyn cm⁻¹, 61 dyn cm⁻¹, or

Table 1. Hlb values calcd for R_nA -copper complexes

	R_nA -Cu ⁺	R _n A-CuOH	
R ₈ A	11	6	
$R_{12}A$	8	4	
R ₁₈ A	6	3	
DBM	9	5	

Table 2. Relation between floatability and surface activity at pH 5

Collector		Floatability ^{a)}	Surface activity	
			Surface tension ^{b)} dyn cm ⁻¹	HLBc)
	Metal ion			
R ₁₂ A	none	_	54	5
$R_{12}A$	Cu^{2+}	91	65	8, 4*
$R_{12}A$	$\mathrm{Fe^{3+}}$	74	61	10, 8*
$R_{12}A$	Ca^{2+}	0	54	8
DBM	none		68	6
DBM	Cu^{2+}	5	69	9, 5
DBM	Fe ³⁺	24	69	11,9*
DBM	Ca^{2+}	0	68	9

a) Collector 3×10^{-5} mol dm⁻³, metal ion 10^{-5} mol dm⁻³. b) Collector 10^{-4} mol dm⁻³, metal ion 3×10^{-4} mol dm⁻³. c) Calculated by the Oda equation.¹⁰⁾ * Hydroxo-metal complex.

54 dyn cm⁻¹, respectively. The copper and iron complexes were considered to be weakly surface-active, and the copper complex would be more hydrophobic than the other. However, the floatability of copper using DBM(having a suitable HLB value) was not so high. The surface tension of a 10⁻⁴ mol dm⁻³ DBM solution was 68 dyn cm⁻¹ and this value was not altered even if metal ions were added. DBM and its complex are presumably surface inactive because of their structural characteristics.

The floatability varies with the concentration of metal ions and the collector. The floatabilities at pH 6.5 for a 2.8×10^{-4} mol dm⁻³ Ga³⁺ solution changed as a function of the R₁₂A concentration and were as follows: 38% with 2.8×10^{-4} mol dm⁻³ R₁₂A, 60% with 5.7×10^{-4} mol dm⁻³R₁₂A, 82% with 8.2×10^{-4} mol dm⁻³ R₁₂A, and 64% with 14.3×10^{-4} mol dm⁻³ R₁₂A, respectively.

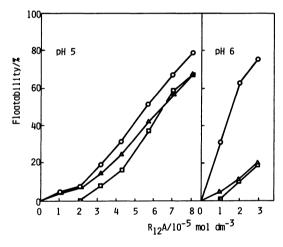


Fig. 2. Selectivity to metal ions.

Mixture of metal ions(Fe³⁺, Ga³⁺, Cu²⁺, Pb²⁺, Zn²⁺,

Cd²⁺, and Ca²⁺: 10⁻⁵ mol dm⁻³, respectively). ○:

Cu²⁺, △: Fe³⁺, □: Ga³⁺.

The selectivity of these agents to metal ions was examined at pH 5 and 6. A Cu2+ ion could be selectively floated with R₁₂A from a mixture of Fe³⁺, Ga³⁺, Cu²⁺, Zn^{2+} , Pb^{2+} , Cd^{2+} , and Ca^{2+} (each a_0 was 10^{-5} mol dm⁻³) at pH 6.0 as indicated in Fig. 2. However, the selectivity was not obtained at pH 5.0. Moreover, the selectivity was also examined using a 3×10⁻⁵ mol dm⁻³ solution of BzA, R₈A, R₁₂A, R₁₈A, and DBM. The floatabilities for Fe³⁺ and Cu²⁺ are indicated in Fig. 3. The Cu²⁺ ion could be selectively floated with R₈A and R₁₂A at pH 6 (floatabilities were 70% and 75%, respectively). However the Cu2+ couldn't be floated with the others. The concentration of R_nA was smaller than that of the total metal ions. Therefore, the mole ratio of a R_nA metal or a R_nA-hydroxo metal complex must be 1:1 at pH 6.0. The HLB values calculated for R₁₂A-Cu⁺ and R₁₂A-CuOH were 8 and 4, as indicated in Table 1. Regarding the complexes of R₁₂A-Fe²⁺, R₁₂A-FeOH⁺, and R₁₂A-Fe(OH)₂, they were 10, 9, and 8, respectively. Consequently, the more hydrophobic copper complex would be floated selectively.3 However, the floatabilities of Cu2+ using BzA and R18A were very low. The calculated HLB values for the complexes of BzA-Cu+ and BzA-CuOH were 12 and 7, and for the complexes of R₁₈A-Cu⁺ and R₁₈A-CuOH were 6 and 3 (Table 1), respectively. The BzA complex would be too hydrophilic, while the R₁₈A complex would be too hydrophobic to be floated selectively.

Extraction. Extractability is greatly affected by the distribution coefficient of the extraction reagent corresponding to the HLB value.^{4,5)} R_nA is expected to be an excellent extraction reagent due to its large distribution coefficient related to its long alkyl group.⁴⁻⁶⁾ Therefore, extractions for eight kinds of metal ions were examined. The metal ions and the pH range when extracted by benzene (a₀ for 10^{-5} mol dm⁻³ metal ion and 10^{-4} mol dm⁻³ R₁₂A) were as follows: for Fe³⁺, 5.5—11; for Ga³⁺, 6—8; for

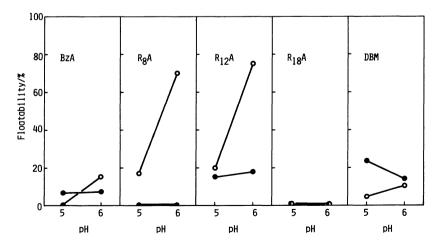


Fig. 3. Selectivity in ion flotation. Mixture of metal ions(Fe³⁺, Ga³⁺, Cu²⁺, Pb²⁺, Zn²⁺, Cd²⁺, and Ca²⁺: 10^{-5} mol dm⁻³, respectively); R_nA: 3×10^{-5} mol dm⁻³; BzA: 3×10^{-5} mol dm⁻³; DBM: 3×10^{-5} mol dm⁻³. \bigcirc : Cu²⁺, \bullet : Fe³⁺.

Cu²⁺, 5.5—11; for Zn²⁺, 8—12; for Pb²⁺, 6—11; for Cd²⁺, 9—13; and for Ca²⁺, 11—13. Extractions for Cu²⁺ and Ga³⁺ ions are shown in Fig. 4. The extraction efficiencies with R_nA and BzA were more effective than that with AA. Furthermore, the highest extractability was obtained by DBM. The HLB values calculated for DBM, R₁₈A, R₁₂A, R₈A, BzA, and AA were 5, 3, 4, 6, 7, and 13, respectively. However, the distribution coefficient of DBM must be the largest value in these agents.

The selectivity regarding an extraction was examined using R₁₂A. The stability constants of the metal acetylacetone complexes (log K_{MA} and log K_{MA_2}) are arranged in the following order: Fe³⁺> $Ga^{3+}>Cu^{2+}>Zn^{2+}>Pb^{2+}>Cd^{2+}>Ca^{2+}.$ 11) The selectivity order regarding an extraction from a mixture of seven metal ions at pH 6.0 was the same as the order regarding their stability constants (Fig. 5). A more selective removal of Fe3+ was obtained at pH 5 when DBM was employed. The formed metal complex is thought to be uncharged(neutral) because the complex is soluble in benzene. Furthermore, the concentration effect of R₁₂A on the extraction of a Cu²⁺ ion suggested that the mole ratio of R_nA to copper is 2:1. The calculated HLB value for both the complexes $\{(R_{12}A)_2Cu \text{ and } (R_{12}A)_3Fe\}$ was 1. Therefore, the selectivity is presumably controlled by the stability constant.

Comparison. Ion flotation by using R_8A or $R_{12}A$ was superior to extraction at a lower pH region and inferior around neutral regarding the separation of Cu^{2+} , Fe^{3+} , or Ga^{3+} ion(Fig. 6). The R_nA -metal complex at a lower pH was a 1:1-complex and the ratio of R_nA to metal ions became maximum around a neutral pH. The 1:1-complex must be slightly hydrophilic(HLB, 4—14) and the 2:1- and 3:1-complexes must be more hydrophobic(HLB, 1). The

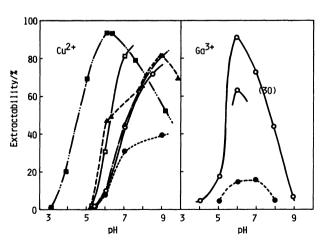


Fig. 4. Extractions for Cu²⁺ and Ga³⁺. Cu²⁺: 10^{-5} mol dm⁻³; Ga³⁺: 2.86×10^{-4} mol dm⁻³; $[R_nA]/[M] = 3$, (=30); Solvent: benzene. \triangle : R_8A , \bigcirc : $R_{12}A$, \square : $R_{18}A$, \blacksquare : DBM.

1:1-complex(which shows a surface-active property) is presumably suitable for ion flotation. Also, coordination-saturated and uncharged complexes of 2:1 and 3:1 are presumably suitable for extraction.

Especially the selective removal for Cu^{2+} ion by the ion-flotation method using R_nA was superior to that by extraction, in spite of a smaller stability constant compared to Fe^{3+} and Ga^{3+} ions.

Recovery. The ion-flotation collector should be recovered almost completely from the residual solution. The residual concentration of R₁₂A was 0.2 ppm after the flotation of Cu²⁺ ions at pH 5, and was below 0.2 ppm after selective removal by the successive addition of R₁₂A at pH 6. Therefore, the additive, R₁₂A, remained in an aqueous solution very little and was floated as a scum. The scum was dispersed in benzene; then, the benzene solution was shaken with a 2 mol dm⁻³ solution of mineral acid.

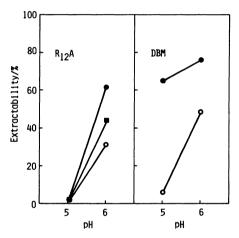


Fig. 5. Selectivity in extraction. Mixture of metal ions(Fe³⁺, Ga³⁺, Cu²⁺, Pb²⁺, Zn²⁺, Cd²⁺, and Ca²⁺: 10^{-5} mol dm⁻³, respectively); R₁₂A: 3×10^{-5} mol dm⁻³; DBM: 3×10^{-5} mol dm⁻³. \bigcirc : Cu²⁺, \bullet : Fe³⁺, \square : Ga³⁺.

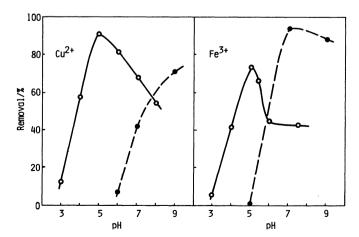


Fig. 6. Removals of Cu²+ and Fe³+.
Metal ions: 10⁻⁵ mol dm⁻³; R₁₂A: 3×10⁻⁵ mol dm⁻³.
○: Ion flotation, ●: extraction.

R₁₂A could be quantitatively recovered from the benzene layer, while the Cu²⁺ ions were recovered from an aqueous layer containing a mineral acid.

References

- 1) Y. Koide, H. Takamoto, K. Matsukawa, and K. Yamada, Bull. Chem. Soc. Jpn., 56, 3364 (1983).
- 2) R. Lemlich, "Adsorptive Bubble Separation Techniques," Academic Press, New York and London (1972); T. Sasaki, "Bunri To Seisei," in "Jikken Kagaku Koza," ed by the Chemical Society of Japan, Maruzen, Tokyo (1966), Ser. 2, Vol. 2, Sec. 15, pp. 565—603.
- 3) Y. Koide, K. Izumi, K. Okuzono, and K. Yamada, Nippon Kagaku Kaishi, 1980, 742.

- 4) H. Watarai and H. Freiser, *J. Am. Chem. Soc.*, **105**, 189 (1983).
- 5) K. Haraguchi and H. Freiser, *Inorg. Chem.*, **22**, 1187 (1983).
 - 6) Y. Yamane, Bunseki Kagaku, 8, 264 (1959).
- 7) F. W. Swamer and C. R. Hauser, *J. Am. Chem. Soc.*, **72**, 1352 (1950).
- 8) G. T. Morgen and E. Holmes, *J. Chem. Soc.*, **127**, 2891 (1925).
- 9) J. Burgess, "Metal Ions in Solution," John Wiley & Sons, New York (1979), p. 265.
- 10) R. Oda and K. Teramura, "Kaimen-kasseizai No Gosei To Sonooyo," Makishoten, Tokyo (1962), p. 501.
- 11) T. Sakaguchi and K. Ueno, "Kinzokukireto III," Nankodo, Tokyo (1967), p. 62.